Heat transfer fouling characteristics of microfiltered thin stillage from the dry grind process.
نویسندگان
چکیده
We investigated effects of microfiltration (MF) on heat transfer fouling tendencies of thin stillage. A stainless steel MF membrane (0.1 micron pore size) was used to remove solids from thin stillage. At filtration conditions of 690kPa, the MF process effectively recovered total solids from thin stillage. Thin stillage was concentrated from 7.0% to 22.4% solids with average permeate flux rates of 180+/-30 L/m(2)/h at 75 degrees C. In retentate streams, protein and fat contents were increased from 23.5 and 16.7% db to 27.6 and 31.1% db, respectively, and ash content was reduced from 10.5% to 3.8% db. Removal of solids, protein and fat generated a microfiltration permeate (MFP) that was used as an input stream to the fouling probe system; MFP fouling tendencies were measured. An annular fouling probe was used to measure fouling tendencies of thin stillage from a commercial dry grind facility. When comparing diluted thin stillage (DTS) stream and MFP, a reduction in solids concentration was not the only reason of fouling decrement. Selective removal of protein and fat played an important role in mitigating the fouling. At t=10h, mean fouling rates of MFP were an order of magnitude lower when compared to thin stillage and diluted streams. When maximum probe temperature (200 degrees C) was reached, mean fouling rates for thin stillage, DTS and MFP were 7.1x10(-4), 4.2x10(-4) and 2.6x10(-4) m(2) degrees C/kW/min, respectively. In DTS and MFP, the induction period was prolonged by factors of 4.3 and 9.5, respectively, compared to the induction period for thin stillage fouling. Mean fouling rates were decreased by factors of 2.3 and 23.4 for DTS and MFP, respectively. Fouling of MFP took twice the time to reach a probe temperature of 200 degrees C than did thin stillage (22 h vs 10 h, respectively). A reduction in heat transfer fouling could be achieved by altering process stream composition using microfiltration.
منابع مشابه
Analysis of Heat Transfer Fouling by Dry-Grind Maize Thin Stillage Using an Annular Fouling Apparatus
Cereal Chem. 83(2):121–126 In dry-grind processing to produce ethanol from corn, unfermented solids are removed from ethanol by distillation and dried to produce distillers dried grains with solubles (DDGS), an animal food. Fouling of thin stillage evaporators has been identified as an important energy consumption issue in dry-grind facilities. Using an annular fouling apparatus, four batches o...
متن کاملEffect of pH on Fouling Characteristics and Deposit Compositions in Dry-Grind Thin Stillage
Cereal Chem. 83(3):311–314 Dry-grind corn processing facilities produce ethanol, carbon dioxide, and distillers dried grains with solubles (DDGS). To produce DDGS, drygrind corn processors concentrate thin stillage in multieffect evaporators. Concentration of thin stillage uses large amounts of energy, and efficient operation is important for long-term economic stability of the industry. Little...
متن کاملEffects of Nitrogenous Substances on Heat Transfer Fouling Using Model Thin Stillage Fluids by Jiayi You Thesis
متن کامل
Industrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.
The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By...
متن کاملEffect of the corn breaking method on oil distribution between stillage phases of dry-grind corn ethanol production.
The majority of fuel ethanol in the United States is produced by using the dry-grind corn ethanol process. The corn oil that is contained in the coproduct, distillers' dried grains with solubles (DDGS), can be recovered for use as a biodiesel feedstock. Oil removal will also improve the feed quality of DDGS. The most economical way to remove oil is considered to be at the centrifugation step fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 101 16 شماره
صفحات -
تاریخ انتشار 2010